Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 14: 579162, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192324

RESUMEN

Locomotion speed changes appear following hippocampal injury. We used a hippocampal penetrating brain injury mouse model to analyze other kinematic changes. We found a significant decrease in locomotion speed in both open-field and tunnel walk tests. We described a new quantitative method that allows us to analyze and compare the displacement curves between mice steps. In the tunnel walk, we marked mice with indelible ink on the knee, ankle, and metatarsus of the left and right hindlimbs to evaluate both in every step. Animals with hippocampal damage exhibit slower locomotion speed in both hindlimbs. In contrast, in the cortical injured group, we observed significant speed decrease only in the right hindlimb. We found changes in the displacement patterns after hippocampal injury. Mesenchymal stem cell-derived extracellular vesicles had been used for the treatment of several diseases in animal models. Here, we evaluated the effects of intranasal administration of endometrial mesenchymal stem cell-derived extracellular vesicles on the outcome after the hippocampal injury. We report the presence of vascular endothelial growth factor, granulocyte-macrophage colony-stimulating factor, and interleukin 6 in these vesicles. We observed locomotion speed and displacement pattern preservation in mice after vesicle treatment. These mice had lower pyknotic cells percentage and a smaller damaged area in comparison with the nontreated group, probably due to angiogenesis, wound repair, and inflammation decrease. Our results build up on the evidence of the hippocampal role in walk control and suggest that the extracellular vesicles could confer neuroprotection to the damaged hippocampus.

2.
Transplant Proc ; 52(4): 1202-1205, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32164959

RESUMEN

BACKGROUND: Severe ischemia-reperfusion injury (SIRI) seems to be the key factor that can significantly affect the function of both native kidneys and renal allografts. Therefore, the development of a successful strategy is of a paramount importance in both basic and clinical research. METHODS: To determine the effects of SIRI on the native kidney function, a murine model was planned as follows: group 1 (n = 6) mice underwent to nephrectomy plus ischemia-reperfusion injury for 30 minutes; group 2 (n = 6) mice underwent to nephrectomy without ischemia-reperfusion injury and thus served as sham controls for SIRI. The results of serum creatinine (SCr) were analyzed using Mann-Whitney U tests to calculate the significance between mean values. Survival between groups was measured by Kaplan-Meier test. RESULTS: To reliably achieve an elevation of SCr levels animals were exposed to a SIRI. The values of SCr increased from 0.35 (SD, 0.09) mg/dL to about 2-fold within 2 days and 3-fold within the following 5 days. Under these given conditions the mice displayed signs and histologic findings of severe kidney damage. The survival rate was about 83% of the animals within a week, and they showed no capacity of complete spontaneous self-regeneration. CONCLUSIONS: In this study, we aim to establish a murine model with extensive structural kidney damage and significant elevation of SCr levels, which could be used in basic and translational research of transplantation and regenerative therapies.


Asunto(s)
Modelos Animales de Enfermedad , Trasplante de Riñón , Insuficiencia Renal/etiología , Daño por Reperfusión/complicaciones , Animales , Creatinina/sangre , Riñón/fisiopatología , Masculino , Ratones , Ratones Endogámicos BALB C , Insuficiencia Renal/patología , Insuficiencia Renal/fisiopatología , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...